

Compound Data Sheet Parker O-Ring Division United States

MATERIAL REPORT

CONTACT US

REPORT NUMBER:

DATE: 8/29/2000

TITLE: Evaluation of Parker Compound KB163-90 (21379)

PURPOSE: To obtain general information.

Recommended temperature limits: -25°F to 300/325°F

Recommended For

High temperature hydraulics

Petroleum based hydraulic oil, motor oil, transmision fluid,

grease R134a

Water/glycol/steam

HFA, HFB, and HFC fluids

Ozone, aging, and weather resistance

Not Recommended For

Polar solvents (ketones and esters)

Strong acids

Chlorinated hydrocarbons
Auto and aircraft brake fluids

Compound Data SheetParker O-Ring Division United States

REPORT DATA

Original Physical Properties,	Test <u>Results</u>
ASTM D412, D2240 Hardness, Shore A, pts.	88
Tensile Strength, psi	3219
Ultimate Elongation, %	107
Modulus @ 50%, psi	1552
Compression Set, ASTM D395 Method B (70 hrs. @ 302°F)	
Percent of Original Deflection (0.070 in C/S o-ring)	46
Percent of Original Deflection (0.103 in C/S o-ring)	42
Percent of Original Deflection (0.139 in C/S o-ring)	32
Percent of Original Deflection (0.210 in C/S o-ring)	23
Percent of Original Deflection (0.275 in C/S o-ring)	19
Percent of Original Deflection (plied)	22
Compression Set, ASTM D395 Method B (1000 hrs. @ 121°F)	
Percent of Original Deflection (0.070 in C/S o-ring)	72
Percent of Original Deflection (0.103 in C/S o-ring)	73
Percent of Original Deflection (0.139 in C/S o-ring)	73
Percent of Original Deflection (0.210 in C/S o-ring)	61
Percent of Original Deflection (0.275 in C/S o-ring)	48
Dry Heat Resistance, ASTM D573 (70 hrs. @ 302°F)	
Hardness Change, pts.	+3
Tensile Change, %	+22
Elongation Change, %	-14
Fluid Immersion, ASTM D471	
ASTM #1 Oil, (70 hrs. @ 302°F)	. 0
Hardness Change, pts.	+2
Tensile Change, %	+29
Elongation Change, % Volume Change, %	0 -2
-	-2
Fluid Immersion, ASTM D471 IRM 903 Oil, (70 hrs. @ 302°F)	
Hardness Change, pts.	-7
Tensile Change, %	+15
Elongation Change, %	+3
Volume Change, %	+8
Fluid Immersion, ASTM D471 Test	
15W-40 Diesel Engine Oil, (1000 hrs. @ 257°F) Results	
Hardness Change, pts.	+3
Tensile Change, %	+13
Elongation Change, %	-28
Volume Change, %	+1

Compound Data SheetParker O-Ring Division United States

Fluid Immersion, ASTM D471	
Cool-Gard ELC, (1000 hrs. @ 257°F)	
Hardness Change, pts.	+2
Tensile Change, %	+12
Elongation Change, %	-3
Volume Change, %	+2